Algebraic Properties of Intuitionistic Fuzzy Residuated Lattices
نویسندگان
چکیده مقاله:
In this paper, we investigate more relations between the symmetric residuated lattices $L$ with their corresponding intuitionistic fuzzy residuated lattice $tilde{L}$. It is shown that some algebraic structures of $L$ such as Heyting algebra, Glivenko residuated lattice and strict residuated lattice are preserved for $tilde{L}$. Examples are given for those structures that do not remain the same. Also some special subsets of $tilde{L}$ such as regular elements $Rg(tilde{L})$, dense elements $D(tilde{L})$, infinitesimal elements $Inf(tilde{L})$, boolean elements $B(tilde{L})$ and $Rad_{BL}(tilde{L})$ are characterized. The relations between these and corresponding sets in $L$ will be investigated.
منابع مشابه
Intuitionistic Fuzzy Congruence Relations on Residuated Lattices
In this paper, the concept of intuitionistic fuzzy congruence relation on a residuated lattice is introduced and its properties is studied. The relationship between intuitionistic fuzzy filters and intuitionistic fuzzy congruence relations on a residuated lattice is obtain. Then the intuitionistic fuzzy congruence relation corresponding to a given intuitionistic fuzzy filter on residuated latti...
متن کاملIntuitionistic (T, S)-Fuzzy Filters on Residuated Lattices
The aim of this paper is further to develop the filter theory on residuated lattices. The concept of interval valued intuitionistic (T, S)-fuzzy filters on residuated lattices is introduced by linking the intuitionistic fuzzy set, t-norm, s-norm and filter theory of residuated lattices; The properties and equivalent characterizations of Interval valued intuitionistic (T, S)-fuzzy filters are in...
متن کاملFUZZY CONVEX SUBALGEBRAS OF COMMUTATIVE RESIDUATED LATTICES
In this paper, we define the notions of fuzzy congruence relations and fuzzy convex subalgebras on a commutative residuated lattice and we obtain some related results. In particular, we will show that there exists a one to one correspondence between the set of all fuzzy congruence relations and the set of all fuzzy convex subalgebras on a commutative residuated lattice. Then we study fuzzy...
متن کاملfuzzy convex subalgebras of commutative residuated lattices
in this paper, we define the notions of fuzzy congruence relations and fuzzy convex subalgebras on a commutative residuated lattice and we obtain some related results. in particular, we will show that there exists a one to one correspondence between the set of all fuzzy congruence relations and the set of all fuzzy convex subalgebras on a commutative residuated lattice. then we study fuzzy...
متن کاملAN ALGEBRAIC STRUCTURE FOR INTUITIONISTIC FUZZY LOGIC
In this paper we extend the notion of degrees of membership and non-membership of intuitionistic fuzzy sets to lattices and introduce a residuated lattice with appropriate operations to serve as semantics of intuitionistic fuzzy logic. It would be a step forward to find an algebraic counterpart for intuitionistic fuzzy logic. We give the main properties of the operations defined and prove som...
متن کاملFuzzy attribute logic over complete residuated lattices
We present a logic, called fuzzy attribute logic, for reasoning about formulas describing particular attribute dependencies. The formulas are of a form A ⇒ B where A and B are collections of attributes. Our formulas can be interpreted in two ways. First, in data tables with entries containing degrees to which objects (table rows) have attributes (table columns). Second, in database tables where...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 13 شماره 2
صفحات 95- 109
تاریخ انتشار 2016-04-30
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023